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Discussing solutions is encouraged but you must individually write and hand in your
solutions. For numerical computations and plots, you can use the programming language
of your choice, e.g. Matlab or Python.

These homework problems build on material covered in lectures 1 and 2.

1 SNR and AUC (2p)

Consider a binary classification task and assume that t is a test statistic that is normally
distributed under each hypothesis with the same variance σ2 but different means t1 and
t2 > t1. Prove Eq. 9.10 in [BKVM]:
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where H(x) is the Heaviside step function. Then express 9.9 in the book as a

convolution integral and use known properties of convolutions.

2 The ideal observer (2p)

The figure shows the probability density function for a scalar-valued measurement g (a
”single-pixel image”) under the two truth states (hypotheses) T1 and T2.

(a) Derive an expression for the likelihood ratio as a function of g and plot the ROC curve.
Would the ROC curve be different with a a test statistic that is linear in g?
(b) Calculate the AUC (you can do this numerically if you want.)
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Figure 1 – Probability distribution functions for g in problem 2 under two truth states: T1

(triangular distribution) and T2 (rectangular distribution).

(c) Calculate the SNR and the corresponding AUC that would have resulted under the
assumption of Gaussian statistics (i.e. the AUC you get by replacing each probability
distribution by a Gaussian distribution with the same mean and variance as the given
distributions). This can be seen as an approximation of the true AUC. You may look up
and use expressions for the variance of the uniform and triangular distributions without
deriving them.
(d) In most situations, a nonzero TPF is not possible to get without also getting some false
positives. Explain why this is possible in this particular case.

3 The ideal observer in nuclear imaging (2p)

A gamma camera is a detector with a collimator in front that can be used to image the
distribution of a radioactive substance in the human body. Consider a gamma camera
with N pixels that is used to acquire a 2D image. Pixel i measures gi ∈ Po(λ) photons,
independently of the other pixels, where lambda is expected photons measured during the
scan (same for all pixels). You want to distinguish between truth states T1 : λ = λ1 (disease
absent) and T2 : λ = λ2 (disease present). Assume that λ2 > λ1.
(a) Show that the test statistic

∑N
i=1 gi is equivalent to the ideal observer.

(b) Now approximate gi as a Gaussian random variable with the mean λ and variance λ.
Derive a formula for the ideal-observer test statistic in this case.
(c) Are there conditions under which the decision strategies in (a) and (b) give a large
difference in the result?
Note 1: What we have modeled here is a limiting case where the feature we are looking for

is larger than the camera. Note 2: It is very common to approximate probability distribu-

tions with Gaussians but in some cases, like here, this approximation can lead to incorrect

conclusions.
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4 A nonlinear imaging system (2p)

A lot of imaging systems have approximately linear imaging operatorsH, but there are also
situations where H is nonlinear. An example is systems based on counting particles (e.g.
photons, electrons, or protons...). If the count rate is too high, these may start missing
counts (”pileup”), leading to a nonlinear relation between input and output counts. In
one simple model (a ”nonparalyzable” detector) the number of input counts in a given
time interval of length t is Poisson distributed with expected value nt and the number of
registered counts Y in the same interval has expected value 〈Y 〉 = nt/(1+nτ) and variance
V [Y ] = nt/(1 + nτ)3. Here, n is the input count rate (counts/time) and where τ is the
time it takes to register one count. (You do not have to prove this!).

(a) Derive a formula for the SNR as a function of n for the task of discriminating between
the two truth states T1: n = n1 and T2 : n = n2 (> n1).

(b) From the answer in (a) derive an approximate expression for the SNR in terms of
∆n = n2 − n1 that is valid to first order in ∆n is when ∆n is small relative to τ−1.

(c) Now we want to study the imaging performance under high count rates. Describe
the difference between the asymptotic behavior of SNR for the two cases (I) n1 is fixed
while n2 → ∞, and (II) ∆n/n1 = constant and small while n1 → ∞. Which of these SNR
figures would you focus on when optimizing the performance of an imaging system? Does
your answer vary depending on the application?

5 The Fast Fourier transform (2p)

Assume that you have an image defined on an N ×N grid with spacing x0 and y0 covering
the interval [−X,X − x0]× [−Y, Y − y0] (X and Y are even multiples of x0 and y0).
(a) Write a script that uses the two-dimensional fourier transform to approximate the
Fourier transform discretized on an N ×N grid with spacing u0, v0. (Hint: use the fft2,
fftshift and ifftshift functions available in Matlab or scipy.fft). Figure out what
the frequencies (u, v) are for the coordinate points of the matrix you get from fft2 in
units of x−1

0 and y−1
0 . Test this function for N = 100 by transforming a two-dimensional

Gaussian with σx = 0.6x0 and σy = 3y0 and verify the result by plotting it together with
the analytically calculated transform in plots along the u and v axes .
(b) Express the discrete Fourier transform of the sampled version of a continuous function
using the comb function Xx0,y0(x, y) =

∑∞

i,j=−∞ δ(x− ix0, y − jy0). Then use this expres-
sion to derive an exact mathematical formula for the numerically calculated approximate
transform that you plotted in a.

Note: It’s easy to make a mistake with the normalization or coordinate axes when Fourier

transforming numerically, so you may find this function useful in the future.

3


	SNR and AUC (2p)
	The ideal observer (2p)
	The ideal observer in nuclear imaging (2p)
	A nonlinear imaging system (2p)
	The Fast Fourier transform (2p)

