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Discussing solutions is encouraged but you must individually write and hand in your
solutions. For numerical computations and plots, you can use the programming language
of your choice, e.g. Matlab or Python.

These homework problems build on material covered in all lectures, in particular the two
last ones.

1 Sparsity-based denoising (3p)

Variational reconstruction problems seldom have closed-form exact solutions but here we
will study one that does. Let us once more return to the problem of a noisy N ×N image
of the night sky. Since only a minor fraction of the image can be assumed to contain visible
stars, it makes sense to look for an image that is sparse in the pixel basis, i.e. as few pixels
as possible are nonzero. Since this gives a computationally difficult problem, we make use
of the observation that the following denoising problem will typically converge to a sparse
image:

ĝ = argmin
g
‖g − gmeas‖22 + λ‖g‖1 (1)

Here, gmeas is the actual measured image, reformatted into a vector, and ĝ is the denoised
image. Furthermore, λ denotes a regularization parameter and ‖x‖p= (

∑

i x
p
i )

1/p denotes
the lp norm.

Show that the solution to 1 is given by

ĝi =











gi − λ/2, gmeas ≥ λ/2

0,−λ/2 ≤ gmeas < λ/2

gi + λ/2, gmeas < −λ/2

(2)
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This is referred to as a ”soft thresholding” of the original image. Can you explain (without
formulas) why such an operation will lead to a sparse image?

2 Deconvolution (4p)

The file HW5_deconvolution.mat contains an image ĝ corrupted by blurring with a psf
h(x,y) (also included) and noise. (If you are using python you can load this with scipy.io.loadmat.)
Deconvolve this image by

ĝ = argmin
g
‖Hg − gmeas‖22 + λ

∑

i

∑

j

wijφ(gi − gj) (3)

where H is an operator that convolves the image with h(x,y).

wij =











1, if pixels i and j are abutting neighbors

1/
√
2, if pixels i and j are diagonal neighbors

0, if i=j or if i and j are not neighbors

(4)

and φ is the Huber penalty

φ(x) =

{

x2/2, |x| ≤ x0

x0|x| − x2

0
/2, |x| > x0

(5)

a) Write a function that takes an input image and calculates
∑

i

∑

j wijφ(gi − gj). Verify

that this function gives the correct output value (4(1 + 1/
√
2)) when x0 = 2 and g is a

zero-filled image with one (non-boundary) pixel being equal to 1. (gi are components of
g.)
b) Use an optimization routine of your choice (you are not expected to implement it
yourself) to solve (3). In Matlab you can use fminunc (you may want to increase the
maximum number of function evaluations to about 100000), and in python, you can use
scipy.optimize.fmin_bfgs. Use λ = 0.02 and try both x0 = 0.02 and x = 1. Explain
the difference in the result between these two cases.
You can implement the convolution using for example conv2 in matlab or scipy.signal.convolve2d
in python. Make sure that the size of the output image is the same as the size of the input
image.
Note: Due to the small size of the image, this should converge in a few minutes. But to

speed up the run time it can be useful to solve the problem for a downsized version of the

image while debugging your program.
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3 The Cramér-Rao lower bound for velocity estima-

tion (3p)

Consider a video sequence of one-dimensional images of an object with center position x(t)
as function of time t. For simplicity we assume that x(t) is known to be at the origin x = 0
at t = and move with constant velocity v, i.e. x(t) = vt. The imaging task is to measure v.
Each frame in the video sequence is acquired with a 1D array of pixels centered at xi = i∆x
for i = −I/2 . . . I/2− 1, at time points tk = k∆t for k = 0 · · ·K − 1. The measured image
value at pixel i at time k is gik = 〈gik〉+ nik where nik is a Gaussian random variable with
mean 0 and standard deviation σ (equidistributed and independent for different i and k).

Let h(x) denote the image of the object centered at x = 0.

Use the Cramér-Rao Lower Bound to show that any unbiased estimator of v must satisfy

V[v] ≥ σ2
1

∑I/2−1

i=−I/2

∑K−1

k=0
h′(xi − vtk)2t

2

k

(6)
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