Problem set 6: Deep-learning-based image processing

Theoretical image science
Mats Persson,

February 2022

Discussing solutions is encouraged but you must individually write and hand in your
solutions. For numerical computations and plots, you can use the programming language
of your choice, e.g. Matlab or Python.

These homework problems build on material covered in all lectures, in particular the two
last ones.

1 Deep-learning-based image denoising and the chan-
nelized hotelling observer (10p)

In this exercise we will use a demonstration script from Mayo Clinic where neural networks
are trained to denoise low-dose x-ray computed tomography images and thereby generate
images that look like normal-dose (i.e., less noisy) images: https://github.com/RSNA/
MagiciansCorner/blob/master/CNNDenoisingTutorial_MagiciansCorner.ipynb An
introduction to how to run it can be found in this article: https://pubs.rsna.org/doi/
epdf/10.1148/ryai.2019190072

To run this code you need python with the deep-learning packages tensorflow and Keras
installed. To avoid having to set this up, you can create a Google Colab account and run
it directly in the browser.

When running locally, I had to comment out the first line %tensorflow_version 1.x.
Also, the second cell will only work on unix-type systems. On Windows, down-
load the dataset manually https://docs.google.com/uc?export=download&id=1-ZqL_
1cqWeG6LsRABOTwiddW8TgQ-q70 and extract to create a subfolder Denoising_Data in the
folder where your notebook is located.

a) Run the notebook in order to train deep convolutional neural networks for denoising
with two different loss functions: MSE loss and perceptual (feature) loss. (Even if
you do not have access to a GPU, you should be able to train this in 5-10 minutes.)


https://github.com/RSNA/MagiciansCorner/blob/master/CNNDenoisingTutorial_MagiciansCorner.ipynb
https://github.com/RSNA/MagiciansCorner/blob/master/CNNDenoisingTutorial_MagiciansCorner.ipynb
https://pubs.rsna.org/doi/epdf/10.1148/ryai.2019190072
https://pubs.rsna.org/doi/epdf/10.1148/ryai.2019190072
https://docs.google.com/uc?export=download&id=1-ZqL_1cqWeG6LsRAB0TwiddW8TgQ-q70
https://docs.google.com/uc?export=download&id=1-ZqL_1cqWeG6LsRAB0TwiddW8TgQ-q70

Which of these networks is most successful in preserving the spatial resolution of the
image? (2p)

To investigate the effect of the number of channels in each layer, try changing to four
channels instead of the default 64 and retrain the network. How does this change the
resulting image? (1p)

After each layer of the network, there are four image channels. Display these four
images for each of the six conv2d layers in a 6 x 4 plot matrix and describe what is
happening as the images is processed through the network. (1p)

Now change back to using the original 64 channels. Retrain the network with [y
(mean absolute error, "MAE”) loss instead of MSE loss. Include this network in the
line profile plot to compare the resolution to the MSE and feature loss. (1p)

The next step will be to evaluate the resulting image quality using the Channel-
ized Hotelling observer (CHO). Unfortunately I am not aware of a publicly available
python implementation (if you know of one, please let me know!) If you want to
avoid having to implement the CHO in python, you can export images from python
to matlab with sio.savemat. and use the Matlab implementation of the CHO in
the image quality toolbox:
https://wp.optics.arizona.edu/cgri/objectives/image-quality-toolbox/
Note that there is a bug in the code. Line 36 of RunExperiment.m should look like
this:

subplot(2,2,i),imagesc(reshape(s(:,1),128,128));colormap(gray); In this
problem you can use the same Laguerre-Gauss channels that are used by default
in this script.

Generate 200 random images, 128 pixels x 128 pixels, filled with white noise of
o = 70 Hounsfield Units (HU), and add a circular disc with a radius of 10 pixels
to 100 of these. Run these images through the neural network and measure the
resulting channelized Hotelling SNR. Adjust the image value inside the disc so that
the CHO has an AUC of approximately 0.8. Then compare the AUC obtained with
MSE, MAE and feature loss to the AUC of the CHO applied to the original, noisy
image. If the results are too heavily affected by statistical uncertainty, you may want
to increase the number of random images. (5p)

Note: If you have done HW2.5 so that you have code to generate ramp filter noise,
feel free to use this kind of noise instead of white noise. Ramp filter noise is more
realistic in this case since it is more similar to the noise in the training dataset.



	Deep-learning-based image denoising and the channelized hotelling observer (10p)

